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commutative theory and normal Wilsonian behaviour is restored. The resulting low energy

physics resembles normal commutative physics, but with additional suppressed Lorentz

violating operators. We also show that the phenomenon of UV/IR mixing occurs for the

graviton as well, with the result that, in configurations where Planck’s constant receives a

significant one-loop correction (for example brane-induced gravity), the distance scale below

which gravity becomes non-Newtonian can be much greater than any compact dimensions.
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1. Introduction

Gauge theories in which the coordinates are noncommuting,

[xµ, xν ] = iθµν (1.1)

are interesting candidates for particle physics, with curious properties (for general reviews

of noncommutative gauge theories see refs. [1 – 3]). One whose consequences we would

like to understand a little better is ultra-violet(UV)/infra-red(IR) mixing [4, 5]. This is

a phenomenon which gives rise to various pathologies in the field theory, making it, at

best, difficult to understand. In this paper we set about examining UV/IR mixing from

the point of view of string theory with a background antisymmetric tensor (Bµν) field,

which provides a convenient UV (and hence IR) completion. Along the way, as well as

seeing how the pathological behaviour is smoothed out, we will outline the characteristic

phenomenology of this general class of theories in the deep IR (i.e. at energy scales lower

than those where noncommutative field theory is a good description): they resemble the

B = 0 theories but with Lorentz violating operators which can be taken parametrically

and continuously to zero by reducing the VEV of Bµν . As a bi-product we also show

that the UV/IR mixing phenomenon extends to the gravitational sector (although a field

theoretical interpretation for UV/IR mixing in gravity is difficult to obtain). This allows
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the curious possibility that gravity may be non-Newtonian on much longer length scales

than those associated with the compact dimensions.

Because UV/IR mixing, and the particular problems and phenomena to which it gives

rise, are rather subtle, we begin now with a detailed discussion of exactly what questions we

would like the string theory to answer, after which we restate our findings in more precise

terms. UV/IR mixing has its origin in the fact that the commutation relations intertwine

large and small scales. At the simplest level, in a gedanken experiment where x1 and x2 do

not commute, the uncertainty relation ∆x1∆x2 ∼ iθ12 together with the usual Heisenberg

uncertainty ∆x1∆p1 ∼ i imply ∆x2 ∼ −θ12∆p1: short distances in the 1 direction are

connected to small momenta in the 2 direction and vice versa. At the field theory level,

this intertwining of UV and IR leads to the infamous phenomenon of UV/IR mixing in the

non-planar Feynman diagrams: nonplanar diagrams are regulated in the UV but diverge

in the IR. Essentially, contrary to the standard picture of the Wilsonian effective action,

heavy modes do not decouple in the IR so that, for example, trace U(1) factors of the gauge

group run to a free field theory in the IR even if there are no massless excitations [6 – 10].

The agent responsible for these unusual and challenging features of noncommutative

gauge field theories is the Moyal star product,

(φ ∗ ϕ)(x) ≡ φ(x) e
i
2
θµν

←

∂µ

→

∂ν ϕ(x), (1.2)

used in their definition. It induces a phase factor exp i
2k.θ.q in the vertices, where k

is an external momentum and q is a loop-momentum. This oscillating phase regulates

the nonplanar diagrams in the UV, which can most easily be expressed using Schwinger

integrals: for example the one-loop contribution to vacuum polarization takes the form

(c.f. [6 – 9, 11, 12])

Πµν(k) ∼
∫

dt

t
e−

k̃2

4t . . . (1.3)

where k̃µ = θµνkν and the ellipsis stands for factors independent of k̃. The exponential

factor in the integrand is a regulator at t ∼ k̃2 ∼ k2/M4
NC , where we define the generic

noncommutativity scale by θµν = O(M−2
NC). Thus the diagram, which without this factor

would be UV divergent, is regulated but only so long as k̃ 6= 0. The result is that the UV

divergences of the planar diagrams reappear as IR poles in k̃ in the nonplanar diagrams.

These divergences are problematic. First they signal a discontinuity because the k̃ → 0

limit of the integrals is not uniformly convergent: physics in the limit θ → 0 does not tend

continuously to the commutative theory. Moreover they lead to alarming violations of

Lorentz invariance. For example, the lightcone is generally modified to a lightwedge [11, 13].

This is in sharp disagreement with observation. Furthermore in noncommutative gauge

theory, the trace U(1) photon has a polarization tensor given by [5]

Πµν = Π1(k
2, k̃2)

(

k2gµν − kµkν

)

+ Π2(k
2, k̃2)

k̃µk̃ν

k̃4
, (1.4)

where the additional term ∼ Π2 is multiplied by a Lorentz violating tensor structure. It is

absent in supersymmetric theories [5], but since supersymmetry is broken, we expect it to be
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at least of order M2
SUSY times by some factor logarithmic in k̃ (where MSUSY is a measure of

the supersymmetry breaking). The result is a mass of order MSUSY for certain polarizations

of the trace-U(1) photon while other polarizations remain massless [14]. Gymnastics are

then required to prevent this trace U(1) photon mixing with the physical photon.

Clearly then, the outlook from the perspective of field theory is gloomy; because the

IR singularities are a reflection of the fact that field theory is UV divergent, any attempt

to resolve them without modifying the UV behaviour of the field theory is doomed. With

this understanding, the general expectation is for a more encouraging picture in a theory

with a UV completion, such as string theory. A more precise argument is the following.

First it is easy to appreciate that, without an explicit UV completion, noncommutative

field theory is unable to describe physics in the IR limit. As noted in ref. [15] and in the

specific context of string theory in ref [16, 17], UV/IR mixing imposes a IR cut-off given

by |k| > ΛIR =
M2

NC

ΛUV
. Inside the range

Λij
IR ∼ 1

|θij |ΛUV
< |k| < ΛUV , (1.5)

the field theory behaves in a Wilsonian manner, in the sense that modes with masses greater

than the UV cut-off do not (upto small corrections) affect the physics there. However

outside this range the Wilsonian approach breaks down because modes above ΛUV affect

the physics below ΛIR. Indeed this inequality makes it impossible to make statements

about either the θij → 0 limit or the k̃ → 0 limit within field theory. In other words, a

UV completion is needed not only to describe physics above ΛUV but also physics below

ΛIR, and in particular to discuss the existence or otherwise of discontinuities there. The

picture is most obvious in the context of running of gauge couplings. Between ΛIR and

ΛUV the effective action accurately describes the running of the trace U(1) gauge coupling

regardless of what happens above ΛUV . Below ΛIR, UV physics intervenes. For example a

period of power law running due to KK thresholds in the UV is mirrored by the ”inverse”

power law running in the IR. Now, the precise UV completion may take various forms, but

suppose for example that it acts like a simple exponential cut-off, e−
Λ2

UV
4t , in the Schwinger

integral. The planar diagrams are regulated in the usual manner, but the nett effect of

the noncommutativity for the nonplanar diagrams is that the UV cut-off Λ2
UV is replaced

by Λ2
eff = 1/(k̃2 + Λ−2

UV ) [4]. In this case when k̃ ¿ Λ−1
UV (i.e. when we are below the IR

cut-off) we would have

Πµν ≈ Π1(k
2,Λ−2

UV )
(

k2gµν − kµkν

)

+ Π2(k
2,Λ−2

UV )Λ4
UV k̃µk̃ν , (1.6)

and normal Wilsonian behaviour would be restored, with the couplings matching those at

the UV cut-off scale. Of course there is no reason to suppose that such a cut-off in any way

resembles what actually happens in string theory, and to discuss the nature of the theory

below ΛIR requires full knowledge of the real UV completion. What then are our general

expectations for physics below ΛIR? Does it correspond to an effective field theory? If so,

what happens to the Lorentz violating divergences in the IR?

These are the precise questions we would like to explore, using a framework in which the

noncommutative gauge theory is realized as a low-energy effective theory on D-branes [18 –
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20, 1]. Our arguments are based on the two point function as calculated on D-branes in the

background of a non-zero B-field [21, 22, 16, 17]. In such a theory, taking the zero slope

limit in a particular way [1] (α′ → 0 with gµν ∼ α′2) yields a noncommutative field theory

in which the role of the noncommutativity parameter is played by the gauge invariant Born-

Infeld field strength: indeed in this limit the open string metric and the noncommutativity

parameter are given by [1]

Gµν =

(

1

g − F
g

1

g + F

)µν

(1.7)

with Fµν = 2πα′Bµν , Bµν being the (magnetic) field strength, and

θµν = −2πα′

(

1

g − F
F

1

g + F

)µν

(1.8)

respectively (we will henceforth restrict ourselves to noncommutativity in the space direc-

tions which we will label ij). The theory at finite α′ provides a convenient UV completion

of the noncommutative gauge theory. The UV ”cut-off” acquires a physical meaning: it

is the scale above which the noncommutative field theory description is invalid and string

modes become accessible, and is of order

ΛUV = 1/
√

α′. (1.9)

The IR ”cut-off” is accordingly given by

ΛIR =
√

α′M2
NC , (1.10)

and, likewise, physics below this scale is best understood by performing a string calculation.

We will rather loosely continue referring to the scale ΛIR as the IR cut-off although of course

we are chiefly interested in exploring the effective theory below it.

What we will show in this paper is that the one-loop effective theory in the k → 0

limit (including any threshold contributions) is the same as the commutative θ = 0 theory,

and in particular there are no IR divergences. Below ΛIR, physics differs from the θ = 0

physics only by nonsingular residual effects that are calculable in any specific model, and

we will estimate their magnitude. In addition we point out that the two point function

of the graviton also gets stringy contributions at one-loop which can modify gravity right

down to ΛIR: if for example MNC ∼ 1TeV and Ms ∼ MP l, then gravity is modified at a

mm even when there are no large extra dimensions. This is an effect equivalent to the one

described for the gauge theory however there is no simple effective field theory description

and it is difficult to understand in terms of “planar” and “nonplanar”.

The rest of the paper is organized as follows. In the next section, we will discuss

and determine the general form of UV/IR mixing in noncommutative field theory which

is embedded in string theory. In section 3 and 4, the mentioned general characteristics

of UV/IR mixing will be justified with explicit amplitude calculations based on bosonic

and superstring models. In section 5, we will analyse how the graviton two point function

is modified by noncommutativity. In section 6, we will discuss how noncommutativity in

string theory may lead to a modification in the IR property of gravity. We will also discuss

its phenomenological implications.
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2. General remarks on UV/IR mixing in string theory

Assuming that the string theory amplitudes are finite (as issue to which we return in due

course), it is natural that the IR singularities should be cured in much the same way

as UV singularities are, since they are intimately related: they are essentially the same

singularities. It is also natural that string theory should cure discontinuities afflicting the

field theory; we certainly expect a string amplitude calculated at non-zero F , which is after

all a rather mild background, to tend continuously to the one calculated at F = 0. What

is more striking is that in a nonsupersymmetric theory the Lorentz violating Π2 term also

tends to zero as k̃2/α′ below the IR cut-off, reminiscent of the field theory behaviour with

the naive Schwinger cut-off.

Consider nonplanar annulus amplitudes in bosonic string theory on a Dp-brane. As

we shall see, the general structure of a one loop diagram can be very heuristically written

as

ANP ∼
∫

dt

t
t−

(p+1)
2 e−k̃2/4t f(t). (2.1)

The function f(t) includes kinematic factors as well as sums over all the open string states

in the loop. The integration parameter t is the parameter describing the annulus. In the

field theory limit α′ → 0 we recover the expected nonplanar field theory contribution, with

t playing the role of a Schwinger parameter. In addition all but the massless open strings

(and in this case the tachyon whose contribution we discard) do not contribute in this

limit. In the present discussion we are of course not interested in taking the field theory

limit but will instead keep α′ finite. The crucial feature of the amplitudes governing the IR

behaviour is that the nonplanar integrands always come with a factor e−k̃2/4t irrespective

of whether we are above or below ΛIR. When k̃2 À α′ the integrand is killed everywhere in

the stringy region t < α′ and the amplitude is close to the field theoretical result. Indeed

one may make a large t expansion rendering the amplitude identical to the field theoretical

one. On the other hand in the area of most interest below the IR cut-off we have k̃2 ¿ α′

and hence stringy t < α′ regions also contribute to the integral. If the integrand is finite

and free of singularities then in the limit as k → 0 the amplitudes clearly tend continuously

to their commutative equivalents. Thus the finiteness of the string amplitudes immediately

guarantees that the k → 0 limits and the θ → 0 limits give the same physics. Moreover in

this limit we may expand the e−k̃2/4t factor inside the integral. The nett result is that far

below the IR cut-off one-loop amplitudes may be written as

A(θ, k) ∼ A(0, k)(1 + λ
k̃2

α′
+ . . .), (2.2)

where λ is a factor including loop suppression and gauge couplings and the second piece

is the leading term in the small k̃2/α′ expansion of the exponential factor. Note that the

A(0, k) prefactor includes the usual one-loop contributions of the commutative theory and

hence all stringy threshold corrections. Thus although various compactification scenarios

may result in vastly different threshold corrections, the leading effect of non-zero B field

will always be of this form. (Extension to N -point amplitudes is trivial.)
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Based on this generic expression for the amplitudes, phenomenology below ΛIR takes on

a characteristic form. First from the low energy point of view the net effect of the non-zero

B field is simply to take the non-planar contribution to thresholds of gauge couplings and

move them down to the IR cut-off, inserting between ΛIR and ΛUV a region approximating

conventional noncommutative field theory. Below ΛIR, the leading deviation from the

commutative theory (including all its stringy thresholds) has a factor k̃2/α′, with the

dimensionality being made up by powers of α′.

Thus for example the Π2 term is of the form

Π2(k
2, k̃2) ∼ λ(k̃2α′)2 (2.3)

in a nonsupersymmetric theory and

Π2(k
2, k̃2) ∼ λ(k̃2α′)2

M2
SUSY

α′
(2.4)

in a theory with supersymmetry softly-broken at a scale MSUSY. (Note that the factor of

(k̃2α′)2 is simply to undo the power of k̃−4 in the above definition of Π2.) This introduces

a birefringence into the trace-U(1) photon, a polarization dependent velocity shift of order

∆v ∼ c
λM2

SUSYM2
s

M4
NC

. (2.5)

This effect is much milder than the naive expectation and can be made phenomenologically

acceptable with a large MNC even if the physical photon is predominantly made of trace

U(1) photon as described in ref. [15]. The model dependent issue here which we will expand

upon in the following sections is the coefficient λ which encapsulates the strength of the

one-loop contributions (i.e. threshold corrections to couplings) relative to the tree level

ones.

If the physical photon is decoupled from the trace U(1) photon (see for example [23]

where the trace U(1) photon becomes weakly coupled in the IR and forms part of a hidden

sector to break and mediate supersymmetry), then there can be interesting implications for

gravity. Consider a theory where the physically observed Planck scale receives significant

one-loop threshold corrections from the open string sector. This contribution can be com-

puted from the two point function of the gravitons with the open string modes running in

the loop. To gain some more intuition on what effects of noncommutativity might be, we

turn to an effective field theory description. A reasonable (but, as it turns out, incorrect)

guess for the effective field theory coupling the open string modes to the graviton is a

lagrangian of the form

L =

∫

d4x
√−ggµµ′

gνν′ Fµν ∗ Fµ′ν′

4g2
, (2.6)

where there is, note, no star product between the ”closed string metric” or in its deter-

minant. The desired contribution can be computed from the two point function of the

gravitons with the gauge bosons running in the loop, and thus our effective field theory

above would generate ”planar” and ”non-planar” diagrams exactly as in the pure gauge

case, the crucial point being the presence of a Moyal phase coming from the vertices. Thus
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one might expect that in string theory, turning on a B-field would separate planar and

non-planar contributions to the graviton two point function, in much the same way as for

the photon. Thanks to UV/IR mixing the nonplanar contributions would change all the

way down to ΛIR below which they would asymptote to the values of the commutative

theory. There, the leading deviation in Planck’s constant from that of the purely commu-

tative theory should be precisely as described above for the gauge couplings. As we will

see in the section 5 the true picture is actually more subtle than this.1 Nevertheless the

effect we described persists; namely that subleading k̃2/α′ suppressed corrections in the

two point function of the graviton lead to a modification of gravity at energy scales higher

than ΛIR.

3. UV/IR mixing in the bosonic string

We will first look at the 2-point function on the annulus for pure QED, equivalent to the

noncommutative Yang-Mills action

S = −
∫

1

4
Fµν ∗ Fµν (3.1)

The contributions to the 2-point amplitudes on Dp-branes in a noncompact 26-dimensional

volume requires open string vertex operators

V = gDpεµ∂Xµeik·x. (3.2)

which have been appropriately normalised (g2
Dp

= (2π)p−2gc(α
′)

p−3
2 ). This gives the am-

plitude

A2(k,−k) = −2α′g2
Dp

Vp

∫ ∞

0
dt (8π2α′t)−

(p+1)
2 η(it)−24 ×

∫ t

0
dx e−2α′k.G(x,x′).k

(

ε1.Gxx′ .ε2 − 2α′(ε1.Gx.k)(ε2.Gx′ .k)
)

∣

∣

∣

x′=0
. (3.3)

Here x, t play the role of dimensionless Feynman and Schwinger parameters respectively.

At this point, we should comment that throughout this paper we shall take the fundamental

domain of the annulus to be [0, 1/2] × [0, it].

Note that we write the measure with integration over all of the vertices, and then use

the annulus’ translation invariance to fix one vertex, including a volume factor of t. The

one-loop Green’s functions required depend on whether the diagram is planar or nonplanar,

and are given by [21, 16, 24]

Gαβ(x, x′) = I0δ
αβ + J

(θ2)αβ

α′2
+ K

θαβ

α′
, (3.4)

where, for the planar case,

IP
0 (x − x′) = log |tθ1(

x−x′

t , i
t)

η3(i/t)
|, JP = 0, KP (x − x′) = − i

4
ε(x − x′), (3.5)

1In the field theory limit, an effective vertex involving a graviton and two photons exists (and indeed we

compute it), but there is no such simple Lagrangian from which it could be derived.
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and for the nonplanar case,

INP
0 (x − x′) = log t

θ4(
x−x′

t , i
t)

η3(i/t)
, JNP =

−1

8πt
, KNP (x + x′) = ±π

t
(x + x′), (3.6)

where the +(−) in KNP applies for the outer (inner) boundary. The feature of these

expressions which ensures the regularization of the nonplanar diagram is the contraction

k.G.k appearing in the exponent of the integrand. We find

−2α′k.GP .k = −2α′k2IP
0 , (3.7)

−2α′k.GNP .k = −2α′k2INP
0 − k̃2

8πα′t
. (3.8)

Having established the Green’s functions, we can perform the integration by parts in

equation (3.3) to extract the kinematics. Defining (for ease of notation) Π̂2 = Π2k̃
−4, we

find

AP
2 = ΠP

1 (k2, 0)[(ε1 · ε2)k
2 − (ε1 · k)(ε2 · k)], (3.9)

ANP
2 = ΠNP

1 (k2, k̃2)[(ε1 · ε2)k
2 − (ε1 · k)(ε2 · k)] + Π̂2(k

2, k̃2)[(ε1 · k̃)(ε2 · k̃)],

where the standard gauge running is given by the formula

Π1 = 4α′2g2
Dp

∫ ∞

0
dt Z(t)e−

k̃2

4α′t
×a

∫ t

0
dx e−2α′k2I0(İ0)

2, (3.10)

while the Lorentz-violating piece is given by

Π̂2 = 4π2g2
Dp

∫ ∞

0

dt

t2
Z(t)e−

k̃2

4α′t

∫ t

0
dx e−2α′k2INP

0 . (3.11)

In eq. (3.10) a = 0 or 1 for the planar or nonplanar case respectively. The term Z(t) is the

partition function for the model, which we shall take throughout to be

Z(t) = (8π2α′t)−
(p+1)

2 η(it)d−24. (3.12)

The parameter d is inserted to remove adjoint scalars from the theory: there are p − 1

physical polarisations of the photon, and the remaining 25 − p modes are scalars, so we

can interpret the parameter d as removing d of these modes. This is performed either

by considering string theory in 26 − d dimensions [25, 21], or taking the spacetime to be,

for example, Rp+1 × R25−p−d × Rd/ZN with the p-brane at a singularity such that the

orbifold projection removes the scalars [16]. In this way, we can alternatively consider d

as modelling the effect of compactified dimensions, and hence we shall refer to d “compact

dimensions” throughout.

The forms (3.9)-(3.11) for the 1-loop amplitudes were already discussed in ref. [21] in

the field theory limit. However it is important to note now that we have not taken any field

theory limit and yet the k̃ dependence is already entirely contained within the k̃2 term:

the sole effect of noncommutativity is to truncate the Schwinger integration to 2πt > k̃2

α′ ,

even in the full string expression.

– 8 –



J
H
E
P
1
1
(
2
0
0
6
)
0
5
8

Thus there are two regimes that we will consider. The first is the regime where k̃2/α′ À
1. In this case the Schwinger integral is truncated to the region 2πt À 1 and the integral

is well approximated by the t → ∞ limit. The second regime is where k̃2/α′ ¿ 1. In this

case much of the Schwinger integral is over the region where 2πt ¿ 1 and one expects the

t → ∞ limit to be a poor approximation. In this limit a good approximation to the integral

requires a modular transformation of the ϑ and η functions to the closed string channel. It

is natural to think of α’ as playing the role of the UV cut-off to the field theory, α′ ≡ Λ−2
UV ,

and then this regime corresponds precisely to

k ¿ M2
NC

ΛUV
≡ ΛIR, (3.13)

i.e. the region in the deep IR where the field theory computation breaks down.

Indeed the integral will become sensitive to the global structure of the compactified

dimensions since the t → 0 UV end of it corresponds to closed string modes in the deep IR.

Note that [26, 27] studied the connection between IR poles and closed string tachyons; we

shall neglect these as we are interested in extracting results relevant to consistent theories.

There may be other thresholds as well as the string scale where for example winding

modes of the compact dimensions start to contribute in the integral. In order for there to

be an effective field theory description below ΛIR these effects should add contributions

independent of p. In order to incorporate these effects one can divide the Schwinger integral

into regions t ∈ [0, 1] and t ∈ [1,∞] where the two approximations are valid.

3.1 Brief review of planar diagrams

The methods for obtaining the low energy behaviour of string diagrams in order to derive

the effective four-dimensional field theories have been well covered elsewhere [25, 28]. Since

the integrals do not contain any evidence of the non-commutativity, as can be seen from

the Green’s functions, the only difference from the B = 0 calculation in this case is a phase

dependence on the ordering of the vertices. The reader is referred to the appendix for details

of the t → ∞ limit for planar diagrams, which reviews some of the basic techniques that we

will be using. We shall consider d dimensions transverse to the brane to be compactified

with a radius close to or at the string scale, although we shall pay special attention to

the case d = 0. The contributions to Π1 and Π̂2 in this limit are given in equations (A.6)

and (A.7).

The t → 0 limit of the planar diagrams is the UV contribution, that is t ∈ [0, 1]

indicating momenta much higher than the string scale. It is well known as the planar

contribution to the string threshold correction, however we present it here in order to

emphasise the way that string theory is thought to render such contributions finite. Let us

compute the t → 0 contribution to the two point functions for a Dp-brane in 26 noncompact

dimensions. We modular transform the expressions to give for the partition function

(8π2α′t)−
(p+1)

2 t12e
2π
t (1 + 24 e−

2π
t + . . .), (3.14)

– 9 –



J
H
E
P
1
1
(
2
0
0
6
)
0
5
8

where, since we are assuming no compact dimensions, there are no winding modes, and

thus

ΠP
1 UV →

g2
Dp

16π2(8π2α′)
(p−3)

2

∫ 1

0
dt t

(21−p)
2 (2t)−2α′k2

∫ 1

0
dy

[

24| cos πy|2| sin πy|−2−2α′k2
+ 8| cos πy|2| sin πy|−2α′k2

]

. (3.15)

Here we cannot neglect the “pole” pieces, but perform the integral in terms of beta functions

and analytically continue in the momentum, using
∫ 1

0
dy| cos πy|a| sin πy|b =

2

π
B(

a + 1

2
,
b + 1

2
) (3.16)

to give the zero-momentum limit

ΠP
1UV

=
5g2

Dp

2π2(23 − p)(8π2α′)
(p−3)

2

, (3.17)

a threshold contribution to the gauge couplings which is finite when p < 23.

Now, of course this computation is a cheat because it assumes that transverse space

was noncompact. In a compact space, sooner or later in the t → 0 limit we need to sum

over winding sectors in the measure of the integral. Once the winding sectors are included

the effective p is p ≡ 25 and the integral diverges. However this divergence is resolved in a

way that is at least qualitatively well understood: the natural way to write A2UV
is with

the parameter S = α′2

T which reveals the expression to be in the α′k2 ¿1 limit simply an

IR pole due to a massless closed string tadpole. Indeed in this limit and when p = 25 the

contribution from level n is proportional to

∫ α′

0

dT

T 2
e−

4π2α′

T
(n−1) =

∫ ∞

α′

dS e−
4π2

α′
(n−1) S, (3.18)

as appropriate for closed string states with m2 = 4π2

α′ (n − 1). Such tadpoles are a signal

that we are expanding around the wrong vacuum, and the solution is to give a VEV to

the relevant fields in order to remove them. In this way the background is modified by the

presence of the tadpoles and the nett effect is that systems with > 2 codimensions (i.e.

p < 23) are insensitive to the moduli of the transverse dimensions, whereas those with 1 or

2 codimensions get threshold corrections that are respectively linearly or logarithmically

dependent on the size of the transverse dimensions, but are still believed to be finite

even when supersymmetry is broken by the construction. In principle in certain tachyon-

free nonsupersymmetric cases one can resum the tadpole contributions to the tree-level

perturbation series to achieve a finite result. The precise details are rather subtle and

beyond the scope of this paper, and the reader is referred to refs. [29 – 31] for more details.

3.2 Non-planar diagrams in the k̃2/α′ À 1 limit

We now turn to the non-planar diagrams. Once we turn on the B-field, the presence of

the e−
k̃2

8πα′t regulating factor will cause the celebrated UV/IR mixing. We may treat the
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UV and IR contribution at the same time in the two limits k̃2/α′ ¿ 1 and k̃2/α′ À 1.

Consider the second of these limits. The integrand is killed in the region where t ¿ k̃2/α′

and hence we may always use the large t limit of the integrand. We obtain

Π1 =
g2
Dp

(4π)
p+1
2

∫ ∞

2πα′

dT T−
(p−1)

2

∫ 1

0
dy

[

(24 − d)(1 − 2y)2 − 8
]

e−Tk2(y−y2)− k̃2

4T

→
g2
Dp

(4π)
p+1
2

∫ 1

0
dy

[

(24 − d)(1 − 2y)2 − 8
]

[

4k2y(1 − y)

k̃2

](p−3
4

)

K p−3
2

(

√

y(1 − y)k2k̃2)

≈
{

d
3g2

Dp
(4π)−

p+1
2 ln k2k̃2, p = 3,

d
3g2

Dp
(4π)−

p+1
2 2p−5Γ(p−3

2 )|k̃|3−p, p > 3,
(3.19)

where in the last step we assumed |k||k̃| ¿ 1 or in other words momenta |k| ¿ MNC . In

the case p = 3 this gives the same logarithmic running to a free field theory in the IR

observed in the field theory. When p > 3 we find power law running in the IR as described

in [32]. The Lorentz-violating term Π̂2 is given by

Π̂2 =
g2
Dp

(4π)
p+1
2

∫ ∞

2πα′

dT T−
(p+3)

2

∫ 1

0
dy (24 − d)e−Tk2(y−y2)− k̃2

4T

≈ (24 − d)
g2
Dp

(4π)
p+1
2

2p−1Γ(
p + 1

2
)|k̃|−(p+1) (3.20)

and shows a similar power law behaviour in the IR. For p = 3 and d = 22 we reproduce

the result of [21]. This behaviour is entirely in line with what one would expect from the

field theory.

3.3 Non-planar diagrams in the k̃2/α′ ¿ 1 limit

In this limit one expects to find behaviour differing from noncommutative field theory. We

now have to split the integral into two halves, t > 1 and t < 1. The first IR part is treated

similarly to the previous section, except in this case we simply set k̃ = 0 in the integrand

when we consider α′ → 0, and should thus obtain the same results as in the planar case; it

is straightforward to show that for p > 3

ΠNP
1IR

≈ d

3

g2
Dp

(4π)
p+1
2

2

(p − 3)
(2πα′)

3−p
2 ,

Π̂NP
2IR

≈ (24 − d)
g2
Dp

(4π)
p+1
2

2

(p + 1)
(2πα′)

−(p+1)
2 . (3.21)

The contributions are roughly constant, and equal to those of the k̃2/α′ À 1 limit when

k̃2 = 4α′.

The second, UV, contribution for t < 1 is the most interesting, as it is this contribution

which in field theory gives IR poles. We now modular-transform the expressions, and

expand in powers of e−
2π
t . For no compact dimensions, we have

ΠNP
1 UV →

g2
Dp

16π2(8π2α′)
(p−3)

2

∫ 1

0
dt t

(21−p)
2 (2t)−2α′k2

e−
k̃2

8πα′t e−
πα′k2

2t

∫ 1

0
dy sin2 2πy. (3.22)
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Note that for k̃2

α′ → 0 the integration is finite and the integral goes continuously to that of

the commutative contribution, i.e. we have

ΠNP
1 (θ) = ΠNP

1 (θ = 0)

(

1 + O(
k̃2

α′
)

)

, (3.23)

as promised in the Introduction; in other words, at momenta k ¿ ΛIR the Wilsonian gauge

couplings return to the values they would have had for a completely commutative theory with

the same gauge group. Note that this statement is expected to be true even when p ≥ 23

and in compact spaces for the following reason. In the finite examples we have seen, the

effect of string theory is clearly to allow the limit k̃ → 0 to be taken continuously, and

to give the same physics as θ = 0. If this is true of any consistent UV completion, then

it seems reasonable to assume that what’s good for the planar diagrams is good for the

nonplanar ones. In other words, if the diagrams are formally divergent, continuity demands

that the vacuum shifts which remove the UV divergences (i.e. closed string tadpoles) in the

B = 0 theory should do so in the B 6= 0 theory as well, upto O(k̃2/α′) corrections. Note

that this is true even though the non-planar diagrams do not factorise onto disks in the

closed string channel; IR singularities arise from divergences in the partition function which

are regulated by the e−
k̃2

8πα′t e−
πα′k2

2t term, and so when these divergences are cancelled, so

are the IR poles.

This reasoning leads one to expect that the Π̂2 term is regulated, since it should tend

to zero as θ → 0. Let us check this by computing the final contribution which is

Π̂NP
2UV

→
24g2

Dp

(8π2α′)
(p+1)

2

∫ 1

0

dt

t4
t

(25−p)
2 t−2α′k2

e−
k̃2

8πα′t e−
α′k2π

2t

∫ 1

0
dy

≈ 24

19 − p

g2
Dp

(8π2α′)
(p+1)

2

. (3.24)

4. Supersymmetric models

To include the effects of worldsheet fermions we require the fermionic propagators [17]:

〈ψα(z1)ψ
β(z2)〉ν = Gαβ θν(z1 − z2)θ

′
1(0)

θν(0)θ1(z1 − z2)
, (4.1)

where the index ν specifies the spin structure, which must be summed over in the full

amplitude. The above differs from the usual boundary fermion propagators purely by the

replacement of the metric by the open string metric, but when we perform the rescaling

of the external momenta and polarizations [21] it is transformed back to the standard

propagators:

〈ψα(z1)ψ
β(z2)〉ν → δαβ θν(z1 − z2)θ

′
1(0)

θν(0)θ1(z1 − z2)

≡ δαβGψ
ν (z1 − z2), (4.2)

which we shall use from now on.
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We wish to calculate the one-loop amplitude for two spacetime bosons with an arbitrary

amount of supersymmetry in the loop, which is defined by the compact dimensions - and

thus only affects the amplitude via the partition function. The vertex operators are

V 0 = gDpεµ(iẊµ + 2α′k · ψψµ)eik·X , (4.3)

and the resulting amplitude gives

Π1 = 4g2
Dp(α

′)2
∫ ∞

0
dt

∑

ν

e2α′ k̃2JZν(t)

∫ t

0
dxe−2α′k2I0

[

(İ0)
2 − (Gψ

ν (z(x))2
]

(4.4)

and

Π̂2 = 4π2g2
Dp

∫ ∞

0
dt

∑

ν

Zν(t)e
k̃2

4α′t

∫ t

0
dxe−2α′k2I0, (4.5)

where Zν(t) is the partition function for the theory, and

zP = ix,

zNP = ix − 1/2. (4.6)

Thus the spacetime fermionic component does not contribute to the Lorentz-violating term,

since the kinematics for it are just the standard commutative gauge pieces. The Lorentz-

violating term thus derives from bosonic correlator exactly as in the bosonic string, the

only difference being the partition function. Of course, if there is any supersymmetry then

this term will vanish, as we expect, and the remaining Lorentz-preserving term can be

calculated from the off-shell continuation of the fermionic piece. For N ≥ 1 SUSY, Π1 can

be simplified using the identity

(Gψ
ν (z))2 =

θ′′ν(0)

θν(0)
− ∂2 log θ1(z) (4.7)

to give

Π1 = 4g2
Dp(α

′)2
∫ ∞

0
dt

∑

ν

e2α′k̃2JZν(t)
θ′′ν(0)

θν(0)

∫ t

0
dxe−2α′k2I0 . (4.8)

Again this is essentially the usual expression for computing threshold corrections, but with

an exponential factor inserted for non-planar diagrams.

To summarize the results of this and the previous two sections, as advertised in the

Introduction, both bosonic and supersymmetric theories are found to tend continuously to

the B = 0 theory as k → 0. In particular the couplings freeze out below ΛIR and the entire

region above ΛIR can now be consistently integrated out in the usual Wilsonian manner.

The phenomenological footprint of the non-zero B field is then in the dispersion relation of

massless particles, and in particular a birefringence of the trace-U(1) photon, which gets a

polarization dependent velocity shift of order

∆v ∼ c
M2

SUSYM2
s

M4
NC

. (4.9)

Whether the EM photon feels this effect is a model dependent question.
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5. The two point function of the graviton

We now turn to the effect of the non-zero B field on gravity by focussing on the graviton

two-point function. In particular, consider the corrections to the Newtonian force law of

gravity due to the coupling of the graviton to gauge fields at one-loop. The momentum

dependence of these corrections determines the running of Planck’s constant, and our

experience with gauge couplings suggests that this also may be subject to UV/IR mixing.

In the naive extension of noncommutative field theory of eq. (2.6), the one loop con-

tributions divide into planar and non-planar exactly as they do for the trace U(1) photon.

However in string theory the relevant diagram is an annulus with two graviton (closed

string) vertices on the interior of the world sheet, and so the only way that planar could

be distinguished from nonplanar would be either for there to be some kind of radial or-

dering effect in the vertices, or for there to be a limit in which the major contribution to

the diagrams came from when the vertices were on the edges of the annulus. Neither of

these possibilities is true and so, even before making any computation, it seems unlikely

that there will be a simple field theory approximation involving Moyal products. The field

theory limit has been the subject of a recent study in ref. [33] where it was indeed found

to be a rather complicated issue. However for the present study we do not need to derive

the effective action (and indeed we don’t): we will instead examine the modification of the

Newtonian force law between matter (open string) fields on the brane, by looking at the

two point function determined at the string theory level.

By restricting our attention to the force law between matter fields, we are evading a

significant technical difficulty, namely that in a sense we have two metrics, one for open

strings and one for closed. We wish to examine the momentum dependence of the gravita-

tional force between open strings confined to magnetised D-branes. In principle we ought

to be doing this by factorizing a four point open string amplitude on the graviton two point

function. The relations for G, g and θ imply

gµν = Gµν − (θGθ)µν

4π2(α′)2
. (5.1)

determining the coupling of the matter on the brane to gravity. We must choose a coor-

dinate system where the components of the metric gµν are made small ( α′Fµν) for the

dimensions in which magnetic field is turned on, so that the noncommutativity tensor θµν

can be tuned to the desired values. Then the relevant momentum scale for the amplitude

is given by the Mandlestam variables running through the loop, determined from the ex-

ternal momenta as contracted with the open string metric. Importantly the closed string

metric is vastly different in the regimes of interest: for the exchange of a graviton with

four-momentum qµ between open strings, the Mandelstam variables correspond to scales

of order

q2 ≡ qµqνG
µν ; (5.2)

but if we were interested in graviton exchange between external graviton states, it would

be more appropriate to use

qµqνg
µν = q2 − q̃2

4π2(α′)2
, (5.3)
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which, by definition, for q ∼ ΛIR, would be of order ∼ M2
s . In the former case, as

we are only dealing with graviton propagators the difference is immaterial since we can

always rescale the graviton states to absorb the difference, but the correct procedure for

(or indeed physical meaning of) the latter is less clear. (For example we would probably

want more information about the other contributions in such a process coming from B

fields, and also more information about what the asymptotic states are – i.e. the effective

field theory.) Thus in calculating the graviton correlator, we shall decompose the square

of the momentum in terms of the open string quantities, and consider k̃2/α′ À α′k2, while

k2k̃2 ¿ 1.

We shall restrict the discussion to exchanges between D3-brane states, for which (since

there can be no orientifold planes) we need only consider the annulus for the induced gravity

on the brane at one loop. A typical model for this scenario would be D3/D7-branes at a

C6/ZN orbifold singularity [34], with a magnetic flux on the 1 and 2 directions. However,

we shall keep the discussion as general as possible. We proceed initially as in ref. [35, 36]

to extract the correction to
M2

Pl

16π , denoted δ, by considering the following kinematic portion

of the graviton two-point function:

〈VG(h1, k)VG(h2,−k)〉 ⊃ −δ

4
h1

µνh2
λρg

µλkνkρ ≡ Aδ (5.4)

where the vertex operators are given by

VG(h, k) = g2
sNG

2

α′
hµν

(

∂Xµ(z)− iα′

2
: k ·ψψµ(z) :

)(

∂̄Xν(z̄)− iα′

2
: k · ψ̃ψ̃ν(z̄) :

)

eik·X(z,z̄).

(5.5)

In the open string channel the Green’s function is given by modular tansforming the result

of ref. [17]:2

Gµν(w1, w2) = −α′

2
ICGµν + JC (θµαGαβθβν)

8π2α′
− KC θµν

2π
, (5.6)

where

IC = ln

∣

∣

∣

∣

θ1(w1 − w2, it)θ1(w1 + w̄2, it)

4π2η6(it)

∣

∣

∣

∣

2

− 4π

t
|=(w1 − w2)|2,

JC = ln

∣

∣

∣

∣

θ1(w1 − w2, it)

θ1(w1 + w̄2, it)

∣

∣

∣

∣

2

− 4π

t

(

|<(w1 + w̄2)|2 −<(w1) −<(w2)

)

, (5.7)

KC = ln θ1(w1+w̄2, it)−ln θ1(w̄1+w2, it)−
2πi

t
=

(

(w1+w̄2+1/2)2
)

− 2πif(=(w1−w2))

2Note that this choice of propagator differs slightly from those given elsewhere [16, 21], but it was

asserted in [17] that the additional terms are necessary to ensure periodicity and obediance to the equations

of motion. They cause a discrepancy when the fields are taken to the boundary; (3.5, 3.6) are not obtained

from (5.7) . However, the closed string propagators only differ by linear terms in JC and KC , plus the

function f which plays no essential role in amplitudes (merely ensuring that the derivatives of the logs in

the antisymmetric portion contain no discontinuities). The reader can check that (5.13) is unchanged by

these, and since IC is identical for both versions, so are all the other results in this section.
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and where f(x) ≡ −[x/t], [y] denotes the closest integer to y. Thus the self-contraction

terms, with normal-ordering and the w1 → w2 limit performed, are

Cµν(w, w̄) = −
(

α′

2
Gµν +

(θµαGαβθβν)

8π2α′

)

ln

∣

∣

∣

∣

θ1(w + w̄, it)

2πη3(it)

∣

∣

∣

∣

2

−(θµαGαβθβν)

8π2α′

8π

t
(2<2(w) −<(w)) . (5.8)

The fermionic Green’s functions are obtained from the torus functions using the dou-

bling trick:

ψµ(w) =

{

ψµ(w), <(w) > 0,

i(g+F
g−F )µν ψ̃ν(−w̄), <(w) < 0.

(5.9)

We obtain

〈ψα(z)ψβ(w)〉ν = gαβGψ
ν (z − w),

〈ψ̃α(z̄)ψ̃β(w̄)〉ν = gαβGψ
ν (z̄ − w̄),

〈ψα(z)ψ̃β(w̄)〉ν = −i

(

gαβ + 2
(θGθ)αβ

4π2(α′)2
− 2

θαβ

2πα′

)

Gψ
ν (z + w̄). (5.10)

As for the gauge bosons, the physical behaviour naturally splits into long distance k̃2/α′ ¿
1 and short distance k̃2/α′ À 1 regimes. In the former, gravity will be dominated by the low

energy modes, for which the usual corrections to Planck’s constant apply. We can expand

the amplitude as a power series in k2 and k̃2, and neglect the terms O(k2) relative to O(k̃2).

In the short distance regime however such an expansion is no longer appropriate, but the

amplitude still has terms with a prefactor of k̃2 which we should consider dominating over

those prefixed by k2. In this way, we may consider the same correlators as being typical

dominating terms in the amplitude for the non-zero B-field corrections to both limits; one

such term is

A⊃
∫ ∞

0
dt

∫

d2z

∫

d2w−g2
s

α′

2
N2

G〈∂Xµ(z)∂̄Xλ(w̄)eik·X(z,z̄)e−ik·X(w,w̄)〉〈k ·ψ̃ψ̃ν(z̄)k ·ψψρ(w)〉
(5.11)

which has a leading contribution of the form

∫ ∞

0
dt

∫

d2z

∫

d2wg2
sN

2
G

k̃2

4π2α′
Z(t)(Gψ

ν )2kakb∂zGaµ∂̄wGbλ〈eik·X(z,z̄)e−ik·X(w,w̄)〉 ≡ Lδ+. . . .

(5.12)

Here Lδ is the component of this term which contributes to Aδ, and we have included in

the partition function the Chan-Paton summation, which corresponds to summing over

the Casimirs of the representations of the gauge group. We shall leave a complete analysis

to future work, and consider the contribution from the corner of the moduli space where

t > 1. Here we can take the derivatives of the Green’s functions to be given by the leading

order terms as t → ∞ - as for the gauge theory case, this is equivalent to a field theory

calculation, but it is more expedient to perform the calculation from string theory. We find
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that the behaviour is dominated by the correlator of the exponentials: this is given by

〈eik·X(z1)e−ik·X(z2)〉 =

∣

∣

∣

∣

θ1(z − w, it)

2πη3(it)

∣

∣

∣

∣

−2α′k2− k̃2

4π2α′

∣

∣

∣

∣

θ1(z + w̄, it)

2πη3(it)

∣

∣

∣

∣

−2α′k2+ k̃2

4π2α′

∣

∣

∣

∣

θ1(z + z̄, it)

2πη3(it)

∣

∣

∣

∣

α′k2+ k̃2

8π2α′

∣

∣

∣

∣

θ1(w + w̄, it)

2πη3(it)

∣

∣

∣

∣

α′k2+ k̃2

8π2α′

exp

[

4πα′k2

t
|=(z − w)|2

]

exp

[

−k̃2

πα′t
|<(z − w)|2

]

. (5.13)

Note that this correctly factorises onto the corresponding boundary amplitude. To take the

field theory limit now, we write T = πα′t, y = =(z)/t, use the translation invariance of the

annulus to fix =(w) = 0, and write <(z) = x,<(w) = x′, and insert the partition function

and kinematic factors, with a sum over spin structures. Making use of the identity (4.7)

and assuming N ≥ 1 supersymmetry, so that after multiplying by the partition function

all spin-structure-independent terms vanish, we obtain the prefactor

F (T ) ≡ (8πT )−2
∑

ν

Zν(
T

πα′
)
θ′′ν(0)

θν(0)
. (5.14)

We shall assume F (T ) has the behaviour

lim
T→∞

T 2F (T ) = β, (5.15)

where β is a constant. If we now insert the factors from our “typical” contribution, we

obtain

LFT
δ = g2

sN
2
G

k̃2

4π2α′

∫ ∞

πα′

dT TF (T )

∫ 1

0
dy(1 − 2y)2e−4k2Ty(1−y)

∫ 1/2

0
dx

∫ 1/2

0
dx′e

−k̃2

T
(x−x′)2

∣

∣sin 2πx sin 2πx′
∣

∣

α′k2+ k̃2

8π2α′ . (5.16)

As discussed, in contrast to a noncommutative field theory, there is no separation into

planar and non-planar diagrams.

Since we are considering the regime k2k̃2 ¿ 1, we reorder the integration and use the

leading behaviour of the Bessel function K0 as in ref. [21] to give

LFT
δ ≈ g2

sN
2
G

k̃2

4π2α′

β

6π
log |k2k̃2|B2

(

1

2
,
1

2
+

α′k2

2
+

k̃2

16π2α′

)

≈ g2
sN

2
G

k̃2

4π2α′

β

6π

16π3α′

k̃2
log |k2k̃2| (5.17)

and thus this contribution to the graviton renormalisation, after we include NG =

(8πG4)
1/2/2π (where G4 is Newton’s constant) is given by

δ ⊃ −4g2
sβG4

3π
log |k2k̃2|. (5.18)
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Note that when we sum over all equivalent diagrams and thus remove the field theory

singularity, the log k̃2 term still remains. However, this is of course not a singularity, as we

have up to this point been considering k̃ À α′.

As k̃ decreases, the amplitude should smoothly revert to the correction for θ = 0. To

find the deviation from Newtonian behaviour at large distances we are interested in the

variation of δ for small k̃2/α′, which as discussed above will be dominated by the same

terms as in the large limit; for the term we have been considering we obtain

LFT
δ = g2

sN
2
G

βk̃2

16π2α′

∫ ∞

πα′

dT

T

∫ 1

0
dy(1 − 2y)2e−4k2Ty(1−y) + O((

k̃2

4π2α′
)2) (5.19)

=
g2
sβk̃2G4

8π3α′
2

∫ 1

0
dy y(1 − y)(1 − γE − log 4π − log(α′k2y(1 − y))) + O((α′k2)2)

from which we extract the contribution to the renormalisation:

δ ⊃ −g2
sβG4

24π3

k̃2

α′

(

−5

3
+ γE + log 4π + log α′k2

)

. (5.20)

6. Phenomenology: modification of gravity at a mm

We now turn to phenomenological issues beginning briefly with the possibility of Lorentz

violation in the photon. In the Introduction we mentioned birefringence of the trace U(1)

photon which is constrained by astrophysical observations. Taking into account our analysis

and the fact that the Lorentz violating operator Π2 vanishes in a fully supersymmetric

theory, the velocity shift is of order

∆v ∼ c
λM2

SUSYM2
s

M4
NC

. (6.1)

Following ref. [37, 38] a relatively firm constraint comes from “time of flight” signals from

pulsars; √
λMSUSYMs

M2
NC

∼
√

λ
MSUSY

ΛIR
< 2 × 10−8, (6.2)

where λ is here a measure of the one-loop suppression in the gauge diagrams, and MSUSY

is a measure of the supersymmetry breaking. A natural question to ask is how low the

IR cut-off can be; in other words, is it likely that a regime that is well approximated by

noncommutative gauge theory will ever be accessible? Alas, the answer is no. Since λ is a

loop suppression factor involving known gauge couplings it will be at least of order 10−3

assuming that the mixing between the physical photon and trace U(1) photon is of order

unity. However supersymmetry is broken and transmitted, one should almost certainly

take MSUSY > 1TeV giving

ΛIR > 109GeV. (6.3)

This bound is comparable to those coming from atomic physics calculated in ref. [39];

MNC > 1014GeV. (6.4)
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Assuming that Ms < MP l, that bound translates into

ΛIR > 2 × 1010GeV. (6.5)

If the physical photon has significant mixing with the trace U(1) photon, it seems likely

therefore that a non-zero B field would be felt as residual Lorentz violation rather than

full blown noncommutative field theory. For more detailed discussion of these questions

see ref. [15].

Consider instead the possibility that the physical photon does not mix with the trace

U(1) photon. This could be the case if the trace U(1) photon forms part of a hidden sector,

or if the trace U(1) is spontaneously broken by for example a Fayet-Iliopoulos term, if it

is anomalous. In this case MNC can be much lower and a significant effect can show up in

gravitional interactions. Our general analysis shows that the graviton two point function

in a theory with nonvanishing θ tends continuously to the commutative one with leading

terms suppressed by factors of k̃2/α′. Neglecting the possible implications of a non-trivial

tensor structure for the moment, the mildest effect one expects is a modification of the

Newtonian force law which derives from it. The observable effects will make themselves

felt as we probe the gravitational interaction at shorter distances. As we saw, there is

something akin to a “nonplanar” one-loop contribution in the sense that G̃(k) interpolates

between the k̃2 À α′ regime and the k̃2 ¿ α′ regime where it deviates from the purely

commutative model as k̃2/α′. Neglecting tensor structure, we can therefore model the two

point function as

G̃(k) =
1

M2
P lk

2

1 + f( k̃2

α′ )

1 + λ
(6.6)

where f(x) → λ(1 + O(x)) for x ¿ 1 and tends to the short range behaviour for x À
1. Here M2

P l is the one loop Planck mass, which includes also tree level disk diagram

contributions such as those considered in ref. [33]. For example if we assume that the

one-loop contribution has power law behaviour ∼ |k̃|(3−p) we can model the total tree and

one-loop two point function as

G̃(k) =
1

M2
P lk

2

1

(1 + λ)



1 + λ

(

1

1 + k̃2

α′

)
p−3
2



 . (6.7)

The coefficient λ encapsulates the one-loop open string contribution to Planck’s constant

in the commutative theory with θ = 0, which can be significant and is model dependent.

Indeed there are generic scenaria that lead to the extremes λ À 1 and λ ¿ 1:

1. The ADD scenario [41, 42]: the Standard Model is associated with a local brane

configuration (for example in a “bottom-up” construction as per the previous section),

with the 4D Einstein-Hilbert action deriving from the dimensionally reduced 10D

action. In this case the one loop correction will be localized whereas the large tree-

level M2
P l is the result of a large volume. The one loop open string contribution will

therefore be suppressed by a factor

λ ∼ 1

V10−p
(6.8)
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where V10−p is the extra-dimensional volume in units of
√

α′. 3-branes in the original

ADD scenario with TeV scale gravity would therefore lead to a tiny λ, but one could

imagine the Standard Model localized on wrapped D7-branes for example, in which

case intermediate values of λ are possible.

2. The DGP scenario [43]: gravity is localized to a 3-brane in infinite or large extra

dimensions by one-loop diagrams with matter (brane) states in the loop. The novel

feature is that gravity becomes higher dimensional at long distances, offering an

explanation of the observed cosmological acceleration. In this case one expects λ À 1

in the region where gravity is 4 dimensional. In more detail, the full action consists

of a bulk term and a one loop induced brane term;

M2
P l

(
∫

d4x
√

g4R
(4) + ρD−4

c

∫

dDx
√

gDR(D)

)

, (6.9)

where R(4) is the curvature form the induced metric on the brane. Since ρD−4
c appears

in the propagator with a factor k2 it is natural that the cross-over length scale above

which gravity appears D dimensional, generically given by [44]

Rc = α′ 6−D
4 ρ

D−4
2

c . (6.10)

This possibility has been analyzed for (Type I) open string models in ref. [35, 36, 44],

where in practice a number of different threshold effects are possible if the matter

branes wrap some compact internal dimensions. The precise details of these other

thresholds will not change our conclusions about the effect of UV/IR mixing.

To see the effect of the one-loop corrections on the potential between two point particles

consider for example θ12 = θ. In this case

k̃2 = θ2(k2
1 + k2

2) = θ2k2 sin2 ϑ , (6.11)

where ϑ is the angle to the 3 direction. The potential depends on the angle ϑ and is given

by the retarded Green’s function;

V (x) =

∫

dt GR(t,x)

=

∫

d3k

(2π)3
G̃(k)eik.x (6.12)

which leads to

V (r, ϑ) =
1

8πM2
P lr

(

1 +
1

1 + λ

∫ ∞

0

(

f

(

r2
c

r2
y2

)

− λ

)

e−y cos ϑJ0(y sin ϑ) dy

)

(6.13)

where

rc =
θ√
α′

=
Ms

M2
NC

. (6.14)
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In the limit where r cos ϑ À rc we may expand f inside the integral. Using the identity

∫ ∞

0
ym≥0e−y cos ϑJ0(y sinϑ) dy = (−1)mm!Pm(cos ϑ) (6.15)

we find that the leading deviation from Newtonian behaviour is a quadrupole moment that

sets in at r ∼ rc: indeed if f(x) = λ(1 + βx + . . .) we find

V (r, ϑ) =
1

8πM2
P lr

(

1 +
λβ (3 cos2 ϑ − 1)

(1 + λ)

r2
c

r2
+ O

(

r4
c

r4

))

. (6.16)

The radius rc is the distance above which Planck’s constant tends to the B = 0 one-loop

value. This is a potential which can be compared directly with the experimental bounds

presented in ref. [45]. Also note that there is a direction given by cos ϑ = 0 where the

physics is identical to θ = 0 physics.

At smaller distances the “nonplanar” contribution to Planck’s constant diminishes.

For r ¿ rc we may use the identity

e−y cos ϑJ0(y sin ϑ) =

∞
∑

n=0

(−1)nyn

n!
Pn(cos ϑ) (6.17)

and approximate

f

(

r2
c

r2
y2

)

= λ

(

1

1 + r2
c

r2 y2

)
p−3
2

(6.18)

to find the first few harmonics as

V (r, ϑ) =
1

8πM2
P lr

(

1

1+λ
+

p−4
∑

n=0

(−1)nB(p−n−4)
2 , n+1

2 )

2n!
Pn(cos ϑ)

(

r

rc

)1+n

+O
(

r

rc

)p−2
)

.

(6.19)

The leading term is the tree-level Planck’s constant, and the subleading terms grow with

radius, as they should, to build up the full one-loop Planck’s constant at large distance.

The most notable general conclusion from this analysis is simply that the distance

scale at which the modification of gravity takes place,

rc =
θ√
α′

=
Ms

M2
NC

, (6.20)

can be much larger than the inherit distance scales in the model. For example if Ms ∼ MP l

and MNC ∼ 1TeV then rc ∼ 1mm (the same numerical coincidence as the large extra

dimension scenarios with 2 extra dimensions).

7. Conclusions

Noncommutative field theory provides a theoretical framework to discuss effects of non-

locality and Lorentz symmetry violation. Proper understanding and better control of the
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UV/IR mixing has been a serious obstacle for the field theory. In this paper, we have

emphasised that the IR singularities are just a reflection of the fact that field theory is UV

divergent. Consequently any attempt to resolve them without modifying the UV behaviour

of the field theory is doomed, and they can only be consistently smoothed out in a UV finite

theory. We have demonstrated this explicitly by considering noncommutative field theory

as an approximation to open string theory with a background B-field. We showed that the

noncommutative field theory description is valid only for the intermediate range of energy

scale Λ2
IR ≡ α′M2

NC < k2 < 1/α′ and explored what happens outside this range. The IR

singularities are rendered harmless and in fact, long before they are reached, the singular

IR physics of the noncommutative theory is replaced by regular physics that is dictated by

the UV finiteness of strings. In many non-supersymmetric theories, tachyonic instabilities

arise from the modified dispersion relation (1.4) [46], which our analysis implies are also

resolved by embedding into an UV-complete theory, as discussed in the context of field

theory in [15].

With the UV/IR mixing under control, one can now reliably study how noncommuta-

tive geometry modifies the IR physics. Below the noncommutative IR scale ΛIR, normal

Wilsonian behaviour is resumed and the low energy physics can be described in terms of

ordinary local physics with residual Lorentz violating operators. Indeed the theory tends

continuously to the commutative B = 0 field theory, with the Lorentz violating operators

remaining as a footprint in the low energy phenomenology of the string scale physics. A

second important example of how the low energy physics is modified arises in the grav-

itational sector. We studied how the noncommutative geometry may modify gravity by

considering the graviton two point function. The departure from the ordinary Newtonian

potential can be much more significant and happen at much lower energy scales than those

suggested by any extra dimensions.

One aspect of the present study that requires further elaboration is the nature of

the effective field theory in the gravity sector and the resulting cosmology. Because of

the difficulty of extracting an effective field theory for the gravitational sector it is not

clear how these features will turn out, or indeed if they lead to any strong observational

constraints.
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A. Field theory limits of string diagrams - a review

First we divide the Schwinger integrals as described above so that

Π1(k,−k) = Π1IR
+ Π1UV

, (A.1)

where UV and IR indicate t ∈ [0, 1] and t ∈ [1,∞] respectively. Considering the IR

contribution of the planar diagram note that, if we reduce θ → 0, then the field-theory
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limit should be the same for planar and non-planar diagrams; equivalently, they should

be the same up to O(α′) corrections. This is not immediately obvious from the Green’s

functions, but we must bear in mind that the planar diagrams have spurious poles on the

worldsheet, and the string amplitude is strictly only defined after analytically continuing

the momentum [25, 28]. The field theory limit is obtained by taking t À 1 and excising

the regions around the poles - i.e. the region |x − x′| < 1 and t − |x − x′| < 1 - and then

keeping terms of lowest order in w:

IP,NP
0 = −(x − x′)2

t
+ π|x − x′| ± ∆ + O(e−2πt), (A.2)

where ∆ is of order w, and the −(+) preceding it applies to planar (non-planar) diagrams.

We retain this term due to the presence of the tachyon, as in [25, 21]; it is given by

∆ = e−2πx + e2π(x−t) (A.3)

so that ∆̇2 = −4π2 + O(w), but for the superstring we shall find that it is irrelevant.

Inserting the above into (3.10) and extracting the contribution from the first level in the

loop, we find

ΠP
1IR

(k2) = −4α′2g2
Dp

∫ ∞

1
dt (8π2α′t)−

(p+1)
2 e2πt(1 + (24 − d) e−2πt + . . .) ×

∫ t

0
dxe−2α′k2π(x−x2

t
)

[−2πx

t
+ π + ∆̇ + . . .

]2

=
−g2

Dp

(4π)
(p+1)

2

∫ ∞

2πα′

dT T−
(p−1)

2

∫ 1

0
dy e−Tk2(y−y2)

[

(24−d)(1−2y)2−8+. . .
]

. (A.4)

This result looks just like the field theoretical Schwinger integral as it should (note the

change to the parameters T = 2πα′t and y = x/t). We have not explicitly written the

tachyonic contribution or contributions coming from states at higher excitation level: the

tachyon because it is unphysical, and the higher states because their nonplanar counterparts

in the IR (p → 0) are all finite. For the moment we need only note that a contribution at

level n yields a Schwinger integral of the form
∫ ∞

2πα′

dT T−
(p−1)

2

∫ 1

0
dy (1 − 2y)2e−T (k2(y−y2)+(n−1)α′−1). (A.5)

To obtain the field theory limit, we perform the integrals above and then take the

α′ → 0 limit; we can do this using the exponential integral. For example, when p = 3 we

have the standard field theory behaviour, with

ΠP
1IR

=
d

3

g2
D3

(4π)2
ln k2 + O(1). (A.6)

For d = 22 we obtain the beta function of ref. [21], but for the case d = 0, we find that the

leading logarithm cancels, and we have the finite result

ΠP
1IR

=
16

3

g2
D3

(4π)2
+ O(k2). (A.7)
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